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Abstract: This study investigates different machine learning architectures for clas-
sifying pause-internal phonetic particles (PINTs), such as filler particles (FPs),
breath noises complementary to silences, and tongue clicks. Many of these PINTs
co-occur, and by modeling them simultaneously, the aim is to improve the classi-
fication accuracy for the surrounding PINTs as well. An annotated subset from a
German spontaneous speech corpus was used for modeling. Mel-frequency cep-
stral coefficients were used as inputs to model PINTs with three kinds of neural
networks: a general neural network, a convolutional neural network, and a recur-
rent neural network. The models used the same hyperparameters, number of layers,
and number of neurons for those layers, so that the focus was put onto the model
architecture. The recurrent neural network was expected to perform the best since
it is able to capture temporal information; however, all models performed similarly.
The models performed best at classifying silent segments, followed by inhalations
and exhalations. However, all models failed to accurately classify FPs and clicks,
indicating that modeling PINTs simultaneously doesn’t always improve accuracy
for surrounding PINTs. These findings suggest that accurate classification is more
dependent on annotation quantity and quality than model architecture. The main
contributions of this paper are the classification of multiple PINTs simultaneously,
and the improvement of PINTs classification for the German language.

1 Introduction

Pause-internal phonetic particles (PINTs) have a wide variety of functions and applications. For
example, silent segments have an important role in breaking up speech. Silent segments refer to
periods of acoustic-phonetic silence that are silent in production but not in transmission. Silent
segments are defined similarly to the definition used by [1]. In other words, silent segments
refer to a phase absent of phonetic particles such as breath noises, clicks, laughter, etc. Breaths
frequently display a relationship with prosodic breaks and turn-taking. Filler particles (FPs)
exhibit communicative functions for turn-taking and maintaining the floor [2], and as a soci-
olinguistic identifier [3]. Additionally, FPs also have technological applications for forensic
voice comparison [4], and can improve text-to-speech (TTS) by reducing the cognitive load for
the listener [5]. Examples of FPs in German are äh and ähm (uh and uhm in English).

The inclusion of PINTs in synthetic speech can improve naturalness and intelligibility. For
synthetic speech, pauses have been shown to improve digit recollection [6], whereas breath
noises improve sentence recollection [7]. The detection and modeling of breath groups can im-
prove the quality of speech synthesis [8, 9]. Previous work [10] has indicated the importance
of quality training data for TTS applications. Most modern TTS systems are unable to generate
PINTs with appropriate location, duration, and frequency, especially for spontaneous conversa-
tional situations. Similar to [8], an additional goal of this work is to incorporate this detection
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Figure 1 – Spectrogram example of annotated PINTs with speech (sp), silent segments (sil), inhalation,
and filler particle (fp) taken from spontaneous speech.

method into a future TTS pipeline, for generating appropriate PINTs for spontaneous synthesis.
These TTS systems can then be incorporated further into robotics, call centers, digital agents,
etc.

Often PINTs co-occur with one another in a variety of sequences. For example, it is com-
mon to find sequences that contain multiple PINTs, such as an inhalation flanked by one or
more silent segments (see Figure 1). Condron et al. [11] showed that training with more classes
improved performance for non-verbal vocalizations (similar to PINTs) and laughter detection.
The traditional approach has been to search for a single PINT, while collapsing all other PINTs
to an ’other’ class, or ignoring them altogether. Since these particles are not usually detected
together, there is an absence of studies that incorporate state-of-the-art methods for detecting
multiple PINTs simultaneously, especially for the German language. I expect that the classifi-
cation of PINTs will benefit from simultaneous modeling, by training with multiple classes of
PINTs, and have a positive outcome on synthesis quality for future research.

The rest of paper is structured as follows. Section 2 discusses the benefits of PINTs audio
classification as well as some of the popular modeling techniques. Section 3 includes infor-
mation regarding the corpus, data pre-processing, and model architectures. Section 4 provides
results from the modeling work, and section 5 consists of a discussion and conclusion.

2 Related Work

There are many applications for audio classification including medical, automatic speech recog-
nition (ASR), and TTS. Previous classification research has distinguished between coughs and
breath noises [12], and detected respiratory disorders [13, 14]. Fukuda et al. [15] found a reduc-
tion in error rate when using breath events as a delimiter for ASR, and [9] found that annotating
breath groups, and including breath noises, while omitting low probability breath events, cre-
ated more fluent TTS.

Many methods have previously been used to detect PINTs: for silent segments [16, 17, 18],
breath noises [8, 11, 16, 18], filler particles [19, 20, 21, 22], and clicks [11, 18]. Classification of
PINTs have been done using a variety of methods, such as convolutional neural networks (CNN)
[14], support vector machines (SVM) [18], Gaussian mixture models (GMM) [21], decision tree
algorithms [23], and template matching [24, 25].
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In a pilot study conducted with a small English dataset, a neural network (NN) was used
to perform a binary classification, predicting breath noises using mel-frequency cepstral coef-
ficients (MFCCs) as input. Historically, MFCCs have performed well for audio classification.
This approach appeared promising for the task of locating PINTs. Machine learning algorithms
are extremely prevalent in current research. This paper will model PINTs using a NN, a CNN,
and a recurrent neural network (RNN). The RNN is expected to outperform the other models
since it is able to evaluate the temporal relationship between different PINTs.

3 Methods

3.1 Corpus

The Pool corpus [26] consists of 100 male native speakers of German (age range 21–63 years
old; mean age 39 years old). The present study considers the combination of the free technical
setting with the spontaneous speech task, i.e. a picture description task. Similar to the board
game Taboo, the speaker must describe a picture while not using any of the words listed beneath
the picture.

This corpus has been annotated with information for different PINTs. There are 100 files in
total (duration range 124–374 s; mean duration 223 s; total duration 6.2 hours). All signals are
sampled at 16 kHz on a single channel. From these files, a total of 17,641 annotated PINTs were
extracted (see Table 1). Additional classes were annotated like laughter, nasal filler particles
(hm), glottal reflex, and other disfluencies like lengthening, truncation, and repair. However,
their occurrences were too infrequent to include in the modeling.

Table 1 – Overview of annotated PINTs. Total refers to the durational total and prop is the individual
PINTs durational total divided by the total time of the corpus.

class count min max mean sd total prop

silent segment 10237 0.01 (s) 20.01 (s) 0.65 (s) 0.95 (s) 111.04 (min) 29.92%
inhalation 2891 0.05 (s) 2.10 (s) 0.51 (s) 0.27 (s) 24.79 (min) 6.68%
exhalation 1887 0.03 (s) 3.23 (s) 0.38 (s) 0.28 (s) 12.15 (min) 3.27%
filler (uh) 1156 0.04 (s) 1.44 (s) 0.35 (s) 0.16 (s) 6.81 (min) 1.83%
filler (uhm) 549 0.15 (s) 2.64 (s) 0.53 (s) 0.25 (s) 4.85 (min) 1.30%
click 921 0.00 (s) 0.50 (s) 0.06 (s) 0.05 (s) 0.96 (min) 0.25%

3.2 Data Pre-processing

The first step for pre-processing was to extract 13 MFCCs with a frame size of 93 ms, and a hop
length of 23 ms, using the Librosa python package [27]. Where the files differed in duration
zero-padding was used in order to maintain the same size for modeling. The models were
trained on the following nine classes: silent segments, inhalation, exhalation, two FPs ("uh"
and "uhm"), clicks, task change (long stretches of silence while the interviewer changes tasks),
zero-padding, and a final category for speech.

3.3 Model Architecture and Training

Models were implemented using Keras [28]. All models are compiled using a sparse categorical
cross entropy loss function, a learning rate of 0.0001, the Adam optimizer, a batch size of 32,
and for 40 epochs. A training/test split of 75/25 is used for all the models. Additionally, 20%
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of the training set is used for validation. Since there are 100 files, 60 files of material were
randomly selected for training, 15 files of material were randomly selected for validation during
model training, and 25 files of material were randomly selected and withheld for testing. Each
model was trained using a different training/test split.

3.4 Neural Network

The NN model incorporates a flattened input layer followed by two fully connected hidden
layers, each with 64 neurons, a rectified linear unit (ReLU) activation function, and a 30%
dropout for each layer. The output is a softmax layer to predict the output class. Training time
is approximately 25 minutes on CPU.

3.5 Convolutional Neural Network

The CNN model is comprised of two 1D convolutional layers. Each with 32 filters (size = 1,
stride = 1), a ReLU activation function, followed by a 1D max pooling and batch normalization.
The output is then flattened and fed into a dense layer with 64 neurons and a ReLU activa-
tion function, with a dropout of 30% applied to this layer. The output is a softmax layer for
predicting the output class. Training time is approximately 35 minutes on CPU.

3.6 Recurrent Neural Network

The RNN model consists of two fully connected long short-term memory (LSTM) layers each
with 64 neurons. Next is a dense layer with 64 neurons, a ReLU activation function, and a
30% dropout. The output is a softmax layer which predicts the output class. Training time is
approximately 70 minutes on CPU.

4 Results

Table 2 compares the accuracy, precision, recall, and F1 score for the three models. Both
the CNN and the RNN performed slightly better than the NN in terms of accuracy and F1
score. The CNN and RNN performed similarly, except that the RNN performed better for
precision. All models began with a relatively high accuracy and improved minimally throughout
the remaining epochs. Overall, the scores for precision, recall, and F1 were lower than expected.
Therefore, a confusion matrix was generated for each model (see Table 3) to further investigate
the classification of individual PINTs. All three models performed best when classifying silent
segments, followed by inhalations and exhalations. For both inhalations and exhalations, they
were most often confused for a silent segment in all models. Overall, the models performed
well when separating inhalations from exhalations and vice versa. However, all models failed
to classify FPs and clicks. Table 4 compares model performance for the individual PINTs. The
CNN performed best when classifying silent segments, the NN performed best when classifying
inhalations, and both the CNN and RNN performed equally well for classifying exhalations.

Table 2 – Accuracy, Precision, Recall, and F1 Score for different models.

Model Accuracy Precision Recall F1 Score

NN 85.6% 53.5% 41.6% 40.5%
CNN 86.1% 53.2% 41.9% 41.8%
RNN 86.1% 69.0% 42.1% 41.7%
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Table 3 – NN, CNN, and RNN confusion matrices for their respective test set. Rows correspond to
annotated class and columns correspond to prediction.

NN
class sil inh exh uh uhm click sum

silent segment (sil) 64971 2743 789 - - - 68503
inhalation 4141 10372 58 - - - 14571
exhalation 3215 497 2188 - - - 5900
filler (uh) 60 3 34 - - - 97
filler (uhm) 68 4 33 - - - 105
click 209 85 6 - - 1 301
sum 72664 13704 3108 - - 1 89477

CNN
class sil inh exh uh uhm click sum

silent segment (sil) 66494 1375 754 - - 1 68624
inhalation 5111 9351 100 - - - 14562
exhalation 3173 336 2532 - - - 6041
filler (uh) 53 2 27 - - - 82
filler (uhm) 80 5 20 - 11 - 116
click 181 73 11 - - - 265
sum 75092 11142 3444 - 11 1 89690

RNN
class sil inh exh uh uhm click sum

silent segment (sil) 64771 1813 811 - - - 67395
inhalation 4214 10098 113 - - - 14425
exhalation 2812 394 2308 - - - 5514
filler (uh) 38 2 13 - - - 53
filler (uhm) 50 2 17 - 3 - 72
click 165 74 8 - - 3 250
sum 72050 12383 3270 - 3 3 87709

5 Discussion and Conclusion

This paper considered different machine learning architectures for classifying PINTs. Surpris-
ingly, the NN, CNN, and RNN performed similarly, with some individual advantages in differ-
ent cases. I had hypothesized that the RNN would perform better than the other two models
since it is better able to capture temporal information. However, this was not the case. The
models were able to easily identify silent segments and could classify inhalations fairly well,
most likely due to them being the most frequently annotated classes. The models had middling
success when attempting to detect exhalations. This is possibly due to the lower frequency of
occurrence of exhalation annotations in the data. Inhalations and exhalations were sometimes
misclassified as silent segments, possibly due to their frequent proximity.

Table 4 – Proportion correct for each model and class.

Model sil inh exh uh uhm click

NN 94.8% 71.2% 31.1% 0.0% 0.0% 0.3%
CNN 96.9% 64.2% 41.9% 0.0% 9.5% 0.0%
RNN 96.1% 70.0% 41.9% 0.0% 4.2% 1.2%
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All models were unable to accurately classify FPs and clicks. This finding is counter to
the hypothesis that modeling multiple PINTs simultaneously would improve the classification
accuracy of other PINTs. The models might have had difficulty classifying FPs because they
were too similar to the speech category. The models struggled to properly classify clicks, which
were often incorrectly classified as a silent segment. This could be in part due to the extremely
short duration of clicks or a drawback of using only MFCCs as input.

The models were designed to encourage parity between them by having a similar number
of layers, neurons for those layers, and the same hyperparameters. This decision was made
to highlight the architectural differences of the models. During training time all three models
started with a relatively high accuracy and only improved slightly during subsequent epochs.
Since all the models performed similarly, I hypothesize that further improvements in accuracy
could be gained by increasing the number of occurrences for the PINTs, especially the infre-
quent ones, showcasing the importance of quality annotations. In addition to MFCCs, other
acoustic features should be investigated in order to improve classification. Lastly, since the in-
puts were MFCCs, the CNN model used 1D convolutional layers. Classification could possibly
be further improved by using spectrogram images instead of MFCCs for models using a CNN
architecture.

A primary goal for developing these classification models is to improve speech synthesis.
Future work will implement a PINTs classification method as part of the training process for a
TTS pipeline to create more natural, conversational speech synthesis.
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